TD n°1: Fonctions analytiques, séries entiéres

Analyse complexe 2025-2026, Thomas Serafini
tserafini@dma.ens.fr

Les exercices marqués d’un £t sont a faire en priorité, ceux marqués d’un ¢t sont des exercices complémen-
taires, & faire pour aller plus loin.

Séries entiéres

£9 Exercice 1. Vrai-faux d’échauffement.
Vrai ou faux ? Donner une démonstration ou un contre-exemple. On considére f(z),g(z) € C[z], et on note
p(f) le rayon de convergence d’une série entiére f. On va utiliseI la Calactélisation comme quoi p(f) est le
sup des réels > 0 tels que |a, |r™ est bornée. On écrit f(z) = a, 2™ et g(z) =D bpz"

L. p(f +g) = min(p(f), p(g)) et p(fg) = mm(p(f),p(g))-

Vrai et vrai. Si |a,|r™ et |b,|r™ sont bornés, alors |a, + b, |r™ < |an|r™ 4 |by|r™ est bornée.
Similairement, si » < v’ < min(p(f), p(g)), en prenant C' > 0 telle que |a,|r'™ < C" et |b,|r"™ < C’, on a

> anbui| ™ < (/)3 a7 < nCr /)"

2. 8ip(f) > p(g), alors p(f + g) = p(g).

Vrai. Soit r > 0 : on a |a, + by|r™ = |by|r™ — |an|r™. Pour p(f) > r > p(g), on a |a,|r™ borné et |b,|r"
non-borné, donc p(f + g) < p(g), ce qui conclut par I'item précédent.

3. Si p(f) > p(g), alors p(fg) = p(g).
Faux. f(z) =1-z, g(z) = 1.

4. Si f € C[z] converge sur le cercle |z| = r, alors p(f) > r. Et en remplacant la conclusion par p(f) > r ?

Vrai, faux. Si ) a,z" converge pour |z| = r alors forcément |a,|r™ est bornée. Un contre-exemple a la
N d ; A o 2" _
deuxiéme affirmation est donné par >_, -, Z> sur le cercle |z| = 1.

5. p(f) = p(f).
Vrai, il suffit de remarquer que a, R™ — 0 si, et seulement si (n + 1)a,+1 R™ — 0.

£9 Exercice 2. Série harmonique
On définit, pour n > 1, H, =1+ 3 L+ %, et

Calculer le rayon de convergence de cette série et démontrer que H(z) = M formellement (et donc pour
tout z dans le disque de convergence).
H,, =log(n)+ O(1) donc le rayon de convergence est 1 par le critére de votre choix.

L D onso et —log(l—2)=>" -, -, on calcule :

lOg 1 — Z Z zm

Z . —_—

1—=2 Z m
n=0 m=1

o1 DS B

020 \m4+n=£,m>1

= ZH[ZK.
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TMerci a4 Hadrien et Louise pour ce phoque et ce raton-laveur en Tikz.



Exercice 3. Une expression explicite pour les suites de Lucas.
On considére, pour a,b € C, b non-nul, la suite définie par Lo = 0,L; =1 et Ly41 = alL, + bL,_1. On pose
L(z) = Zn>0 L,z".

1. Montrer que L(z) = —=——.
On vérifie que

(1—-az— bzg)L(z) = Z(L” —aLp_—1—0bL,_2)2" + Lo+ L1z — aLg = z.

n=2

2. En écrivant 1 — az — b2%2 = —b(z — a)(z — ) et en réalisant une décomposition en éléments simples, en
déduire une expression explicite pour L,. On pensera a différencier les cas o # 8 et a = .
On vérifie que

—b(z—;)(z—[)’) :b(al—ﬂ) (ziazi6’>

De 14, en écrivant

on trouve

1 1 1
b= -a) ( - ﬁ)

1 1 n n
o b e an”

n=0

Sia=/j,ona

Exercice 4. Somme de carrés.

Notons 79(n) le nombre de points a coordonnées entiéres positives sur le cercle de rayon /n, et D,, le nombre
de points & coordonnées entiéres positives dans le disque de rayon \/n (par exemple, 75(5) = 2 car 22 + 12 =
12 + 22 = 5). Démontrer que

2
m?2 o n
z = ro(n)z
m=0 n>=0
puis que
2
1 2
T E zm = E D, z".
-z
m=>=0 n>=0

Quels sont les rayons de convergences de ces séries 7
2
rAA 3 m Py— n = > ] ~A ]
On réécrit » ms02 " = > n>0Cn2" Ol ¢y est 1 sin est un carré et 0 sinon. On trouve donc

2

2

m20 n>0 \i+j=n

11 suffit & présent de voir que Y ;- ¢;¢,—; = r2(n) : pour ¢a, on remarque que ¢;c,—; est 1 précisément quand
i+ mn —1i=n est une écriture de n comme somme de deux carrés, ce qui conclut pour le premier calcul.
Le second calcul revient juste & écrire D, = > r2(k).

£ Exercice 5. Un peu de combinatoire.

Soit P, le nombre de fagons de partitionner un ensemble de n éléments en morceaux de cardinal 1 ou 2, on
considere S(2) :== > Doz,

n



1. Prouver I’égalité de séries entiéres

S'(z) = (14 2)S(2).
Prouver l'égalité S’(z) = (1 4 2)S(z) revient a prouver P11 = P, + nP,_; car

! o Pn+1 n o P’ﬂ n Pn,1 n
S(Z)—ZTZ »(14—2)5(75)—2?3 +Zmz :

n=>0 ’ n>0 n=1

Cette égalité se prouve combinatoirement : si on consideére les partitions de A,, := {1, ...,n}, une partition
de A,,+1 en morceaux & 1 ou 2 éléments correspond soit & une partition de A4,, (si n+ 1 est seul), soit au
choix d’un élément i de A, (le compagnon de n + 1) et une partition de A4, \ {¢}.

. En déduire une expression de S(z).

2
L’équation différentielle se résout explicitement dans C[z] par S(z) = Ce*tZ . Comme S(0) = 1, on sait
que C' = 1.

. En déduire une formule pour P,.
11 suffit a présent de développer :

22 2
ez+ s — €Z€Z /2
on Z2m
=X ST
n=0 m=0
k! Pl
n Z Z nl2mm! | k!
k>0 \n+2m=k

On trouve finalement
Lk/2]

k!
e = mz_:o ml(k — 2m)I2k—2m"

Exercice 6. L’anneau C[z].
On introduit sur C[z] la valuation ord définie par

ord Z anz" | =min{n > 0: a, # 0}

n>=0

et ord(0) = +o0.

1. Montrer que ord(f) > k si, et seulement si z* divise f dans C[z].

ord(f) > k si et seulement si ag = ... = ax_1 = 0, auquel cas
f(z) = apz® + ak+1zk’+1 +..= zk(a;C +aki12 + ...).

Réciproquement, si f(z) = zkg(z) pour une certaine g, alors ses k premiers coefficients sont nuls et
ord(f) > k.

2. Vérifier que ord(fg) = ord(f) + ord(g).

En posant m = ord(f), n = ord(g), on a f = z™u(z),g = z"v(z) avec u(0),v(0) # 0. On a alors
fg = 2"""uv, ou le coefficient constant de uv est u(0)v(0) qui est non-nul.

. Montrer que f(z) € C[z] est inversible si et seulement si elle vérifie ord(f) = 0. En particulier, tout
élément f(z) € C[z] s’écrit uniquement comme f(z) = 2"g(z) avec g inversible et n = ord(f).
Comme ord(f) =0, ag # 0, et donc quitte & multiplier par 1/ay on peut supposer que f(z) =1— zg(z).

De 1a, les propriétés de composition des séries entiéres nous assurent que (1 — zg(z)) - % =1.



4. Soit I C C[z] un idéal. Montrer que I C zC[z].
Comme [ est un idéal propre, il ne contient aucun élément inversible, donc tous ses éléments sont d’ordre
> 1, et donc multiples de z.

5. Montrer qu’en fait il existe m tel que I = z™C[z]. L’anneau C[z] est un anneau principal !
Soit f(z) un élément d’ordre minimal m dans I : on écrit f(z) = z™u(z) avec g inversible. Si g(z) =
2™h(z), alors g(z) = f(2)u(z)"th(z) € I, d’ott 2™C[z] C I. Comme m est minimal, tout élément de I
est multiple de 2™, ce qui conclut.

6. Vérifier que les résultats de cet exercice restent valides si 'on remplace C[z] par 'anneau C{z} des séries
entiéres de rayon de convergence > 0.
Le seul point réellement délicat est la convergence de la série entiére

R
1 —2zg(2)

si 1 — zg(2) est convergente, mais ¢a découle de la convergence du composé de séries entiéres conver-
gentes (on pourrait aussi s’amuser & borner explicitement vu que les coefficients sont raisonnablement
sympathiques).

{7 Exercice 7. Composition de séries entiéres.
Soit f(z) = >2,50an2™ € C[2], h(2) = 37,51 cnz™ € C[2]. Onmote >, -, Cm 2" la série entiére h(z)™. On
définit la série entiére composée f(h(z)) comme :

Fh(z) = < amCmm) 2"
0

n>=>0 \m=

1. Montrer que (f+g)(h(2)) = f(h(z))+g(h(2)) par calcul direct. Pouvez-vous montrer la méme propriété
pour le produit 7
L’expression des coefficients de f o g est linéaire en les (a,),. Pour le produit, j’ai essayé et je n’ai pas
réussi.
On note f,,(z) le polynoéme ag + a1z + ... + a;, 2™ et hy,(2) le polynome ¢z + ... + ¢, 2"

2. Montrer que pour m,n > k, les termes de degré < k du polynome f,,(h,(z)) ne dépendent pas de
m,n > k et sont les mémes que ceux de la série entiere f(h(z)).
On commence par observer que pour u polyndme et n,n’ > k, les termes d’ordre < k de u(h,(2)) et
u(hyr(2)) sont les mémes.
Pour r > k, h,,(2)" n’a que des termes d’ordre > k puisqu’il est de la forme z"v(z). Soient donc m, m’ > k,
fm(hn(2)) et fr(hn(2)) ont les mémes termes d’ordre < k puisque leur différence ne comporte que des
termes de la forme h(z)". Par conséquent, f,,(h,(2)) et fi/(h,(2)) ont les mémes termes d’ordre < k.
Comme le coefficient C,, ,, ne fait intervenir que les coefficients de h de degré < n, c’est aussi le coefficient
de z™ dans h,(2)™. Vu que le coefficient de 2™ dans f(h(z)) ne fait intervenir que les a, et C,, pour
r < n, c'est aussi le coefficient de 2" dans f,,(h,(z)) pour m > n.
Tout ce raisonnement est rendu beaucoup plus simple en travaillant dans C[z]/(2*) et C[z]/(z%), et
notamment en remarquant que les deux sont naturellement isomorphes. Notamment, demander & ce que
les termes de degré < k de deux séries entiéres u,v soient égaux revient a demander & ce que u = v
mod z**1. Ensuite, il suffit d’observer que f(z) = fn(z) mod zF*1 et h,(z) = h(z) mod zF! et
comme h(z)" =0 mod 2**! pour r >k, on a fu,(hn(2)) = fm(h(2)) = f(h(2)) mod 2*+1.

3. En déduire que la composition est compatible au produit et associative.
L'égalité frn(hn(2))gm(hn(2)) = (f@)m(hn(2)) mod 25! pour m,n > k permet de conclure pour le
produit. L’associativité découle du fait que si g, h sont divisibles par z, alors pour I,m,n > k, on a
fm(giohn(2))) = fmogi(hn(2)) par associatvitié de la composition de polynomes. Comme les coefficients
d’ordre < k de f,, o g; sont ceux de f o g et les coefficients d’ordre < k de g; o hy, sont ceux de g o h, ce
qui conclut.

4. Vérifier que si f et h ont un rayon de convergence non-nul, alors f(h(z)) a un rayon de convergence
non-nul, et que f(h(z)) est bien le développement en série entiére de la fonction f o h.
Comme h a un rayon de convergence positif, elle définit une fonction continue sur le disque fermé de



rayon r pour tout r > 0 assez petit. Comme h est continue et h(0) = 0, étant donné 7’ > 0, il existe un
r > 0 tel que A(D(0,7)) € D(0,r"). 11 suffit alors de prendre " < p(f) : alors, pour |z| < min(r,7’), on a
convergence dbsoluc de >~ amh(2)™ et de Y C,y, 2" et on peut échanger

= Z amh(2)™

m=0

— E E ~T
- (LnL C?Tl s z

m=0 n>=m

_Z(Zam mn)

n>0

& Exercice 8. Théoréme de Cauchy pour les équations différentielles
On désire démontrer le théoréme suivant :
Théoréme de Cauchy : Soient ag,...,a,—1 € C[z]. Le C-espace vectoriel des solutions y(z) € C[z] de
I’équation différentielle

Y () + an-1(2)y "D () + .+ ao(2)y(z) = 0 (1)
est de dimension n, et un isomorphisme explicite avec C™ est donné par

y = [5(0),4/(0), ..,y (0)]

De plus, si les a; ont toutes un rayon de convergence > R, alors les solutions ont un rayon de convergence > R.

1. On pose A(z) € M, (C[z]) la matrice

0 1 0
A,
—ap(z) —ai(z) ... —ap—1(2)

Démontrer que y +— [y(2), v/ (2),...,y™(2)]7 réalise un isomorphisme entre I'espace des solutions de (1)
et lespace des y(z) € C z] verlﬁant
Y'(2) = A(2)y(2). (2)

17,1 equatlon y'(2) = A(2)y(z) est équivalente
et Yy, 1 = —an-1Yn—1 — ... — agYo, donc on

C’est une vérification directe : si y(2) = [yo(2), ..., Yn—1(2)
a yj(2) = yip1(2) pour i = 0,...,n — 2, donc y;(z) = y(z
retrouve I’équation voulue en remplagant y; par y(*).

2. Vérifier que la donnée de n solutions de (2) est équivalente & la donnée d’une matrice Y'(z) € M, (C[2])

vérifiant
Y’ = AY. 3)

Multiplier une matrice a gauche par A revient a multiplier ses colonnes par A.

3. Soit Y € GL,(C[2]) une solution de (3). Vérifier que X = Y ! est solution de I'équation différentielle
X'(z) = =X (2)A(2). On pourra penser a vérifier que la régle de Leibniz (UV) = U’V + UV’ S’applique
dans le cas de matrices.

On dérive la relation YY1 =1,, :
Y'Y '+Y(Y 1) =0
donc (Y1) = -y ~1Y'Y~L. Comme Y’ = AY, on a

(Y1 =Y TAYY ' =Y 'A



4. Démontrer que si Y7 € GL, (C[z]), Y2 € M, (C[z]) sont des solutions de (3), la matrice Y, 'Y> est une
matrice constante. En déduire que si une telle matrice Y; existe, l'espace des solutions de (2) est de
dimension n sur C.

On vérifie en appliquant la régle de Leibniz que (Y, 'Y2)' =0 :

(Y1_1)/Y2 + Y1_1Y2/ = *Yl_lAYQ + Yl_lAYQ =0.

Par conséquent, Yo = Y1C avec C' une matrice constante : en particulier, les colonnes de Y; forment une
C-base de 'espace des solutions.

. En écrivant A(z) = >°, 5 Anz", résoudre (3) avec la condition Y(0) = 1,,. Vérifier que la matrice ¥’
obtenue est inversible.

Indication : on pourra vérifier que la série entiére det(Y (z)) est inversible

C’est encore un calcul : on a d’une part

Y/ = Z(n + 1)Y,L+lzn

n=0

et d’autre part

AY = Z < AkYn—k> 2"
k=0

n=0

Par conséquent, Y’ = AY et Y(0) = 1,, si et seulement si (Y,), vérifie

YO =1,
Yn+1 - %Jrl ZZ:O Akynfk

11 existe clairement une et une seule suite de matrices vérifiant ces conditions. Pour vérifier I'inversibilité
de Y, il suffit de vérifier que det(Y") est une série entiére inversible. Mais Y (0) = 1,,, donc det(Y (0)) =
det(Y)(0) = 1. C’est donc une série entiére inversible.

. En déduire la partie formelle du théoréme de Cauchy.
L’existence d’une matrice de solutions inversibles implique I'existence d’une base de cardinal n par les
questions précédentes.

. Utiliser I'expression explicite trouvée pour les coefficients de Y pour prouver la partie sur les rayons de
convergence.

Indication : montrez que si A(z) converge sur le disque de rayon R, alors Y (z) converge sur le disque de
rayon r pour tout r < R.

Notons |M| la norme donnée par le sup des modules des coefficients de M. On a |[MN| < n|M] - |N|.
Si R est tel que A converge sur le cercle de rayon R, alors |A,,| < CR™™ pour une constante réelle C' > 0.
Soit r < R un réel, on veut montrer qu’il existe une constante D (& déterminer) telle que |Y,| < Dr—™.
On procéde par récurrence.

m

n
|Ym+1| < m+ 1 Z |Ak‘ : |Yr7nfk‘
k=0

n k,.—m
<
N Z CD(r/R)"r
k=0m
CDn 1
g - .
m+1 1—r/R
Cnr
<D
(m+1)(1—r/R)"

—m

—m—1

Il faut a présent choisir judicieusement la constante D. Pour m assez grand, l'inégalité |Y;,| < Dr—™

sera vérifiée car Wl)c(%/ﬁ’/) — 0 quand m — oo, et donc elle devient inférieure a 1 a partir d’un certain

rang mg. Si 'on choisit D supérieure a |Y,,|r™ pour tout m < mg, alors certainement I'égalité sera
vérifiée par défaut pour m < my, et elle le sera pour m > mq grace au choix de my.



Fonctions analytiques

£ Exercice 9. Opérations sur les fonctions analytiques.
Montrer les propriétés suivantes :

1. Soit U un ouvert connexe et f,g : U — C deux fonctions analytiques. Montrer que le produit z —
f(2)g(z) est analytique.
La question est locale sur U, et le produit de séries entiéres convergentes est convergent (et le produit
est compatible a I’évaluation en un point du domaine de convergence).

2. Soient U,V C C des ouverts et soient g: U — V', f: V — C des fonctions analytiques. Montrer que la
fonction f o g: U — C est analytique. En particulier si f est analytique sur un ouvert U et ne s’annule
pas, la fonction 1/f est analytique (On pourra penser & l'exercice 7).

La question est encore une fois locale sur U. Si 'on considére le développement de g au voisinage de
g(z0) € V, le coefficient constant est nul, et on peut composer les séries entiéres correspondantes en toute
sérénité.

3. Montrer que cos?(z) + sin®(z) = 1 pour tout z € C, de préférence sans calcul !
L’identité cos? +sin? = 1 est déja connue sur R, et le principe des zéros isolés appliqué a la fonction
cos?(z) + sin?(z) — 1 permet de conclure.

4. Soit U C C un ouvert connexe, on considére une fonction analytique f non nulle sur U et K C U un
compact. Montrer que f a un nombre fini de zéros dans K.
L’ensemble V(f) C U des zéros de f est discret dans U par le principe des zéros isolés. Si K C U est
compact, K NV (f) est compact et discret et donc fini.

£9 Exercice 10. Une fonction analytique qui ne se prolonge pas.
Démontrer que la série entiére Zn20 22" deéfinit une fonction analytique sur I qui diverge au voisinage de

e pour k € Z,m > 0, et en déduire qu’il existe des fonctions analytiques sur le disque qui ne se prolonge a
aucun ouvert connexe contenant strictement le disque.

n

Soit r < 1 : pour n > m, (re 2™ ) =r2" et donc
m—1
2ikm on _2ikm_ on
flrez ) = E ré ezm-n 4 r2
n=0 n>m+1

Le premier terme est borné en module par m et le deuxiéme terme diverge vers +oo quand r — 1, ce qui
L. L. 2ikm . . . .
prouve que f diverge au voisinage de e2™ . Tout ouvert U contenant strictement I contient nécessairement
2ikT N
un e2™ | et on ne peut donc pas prolonger f a U.

Exercice 11. Annulation des coefficients de Taylor.

Soit U C C un ouvert connexe, f une fonction analytique sur U qui n’est pas un polynéme. Montrer qu’il
existe un point a € U tel qu'aucun coefficient du développement en série entiére de f au voisinage de a n’est
nul.

Indication : on pourra montrer que l’ensemble des points ot la non-annulation de tous les coefficients est
vérifiée est un Gs dense.

Considérons I’ensemble U,, = {a € U : ) (a) # 0}. C’est un ouvert non-vide (car f n’est pas un polynome)
qui est méme dense dans U car son complémentaire, donné par f(") = 0, est discret. Par le théoréme de Baire,
une intersection d’ouverts denses est encore dense, et donc il existe un point a € Ny,>oU,,.

Exercice 12. Sommation d’Abel.
Soit (An)n>0 €t (Bn)n>o0 deux suites de nombres complexes.

1. Montrer la formule de sommation par partie : pour tout entier n > 1 on a

n—1 n—1
> (A1 — Ap)Bi = (AnBy, — AoBo) = Y Ax11(Bri1 — By).
k=0 k=0



On a la somme téléscopique

n—1
> (AxBy — Ag1Biy1) = AoBo — An B,
k=0
que 'on peut écrire comme
n—1 n—1
> (AxBr — Agy1Bii1) = Y Ax(Brar — Bi) + Br(Arg1 — Ag).
k=0 k=0

2. Soit (an)n>0 une suite de nombres complexes telle que la suite des sommes partielles (3.7 an)n>0
est bornée, et (By)n>0 une suite de nombres réels strictement positifs, décroissante, tendant vers 0.
Démontrer que la série ), a,B, converge.

Posons pour tout n > 0, A4,, = " 0@k et Sy EZZO axBy. On va montrer que sous les hypothéses,
(Sn)n>0 est une suite de Cauchy. Posons A >0 tel que |A,| <
tels que N > M, on a par la sommation d’Abel
M-1 N—-1
|Sv — Su| = |[ANBy — Ap By + Z A (Bi41 — Br)| < Aby + Aby + Z A|Bjp+1 — Bi| < 24by.
k=N k=M

Ceci conclut que (Sy,)n>0 est une suite de Cauchy et donc convergente.

3. Soit (By,)n>0 une suite décroissante de nombres réels tendant vers 0 telle que la série de terme général B,
est divergente. Montrer que la série entiére ), B,2" a pour rayon de convergence 1 et est convergente
en tout point de U={z€ C: |z| =1} sauf en z = 1.

Il est clair que le rayon de convergence de > B, 2" est < 1 puisque la série entiére diverge pour z = 1.
De plus pour z € C tel que |z| < 1, comme la suite des |B,| est bornée, disons par C' > 0, on a

Z|ann‘ CZ‘ | |

n=0 n=0

donc la série ) B, 2" converge absolument en |z| < 1, par conséquent le rayon de convergence est 1.
Soit z € U\ {1}. Pour démontrer que la série converge en z, on applique le critére d’Abel. Pour tout

N>0
Zz

n=0

\1*2\

donc les sommes partielles des 2™ sont bornées. On est donc est bien sous les hypothéses de la question
précédente avec a,, = 2™ et par conséquent »_ B,z" converge si z # 1.

& Exercice 13. Lemme de la partie réelle.
Soit f(z) = >, anz™ une série entiére a coefficients complexes, de rayon de convergence +oo. Pour tout
r € Rxo, notons M(r) = sup, <, [f(2)] et A(r) = sup|,<, [R(f(2))|. Le but de I'exercice est de montrer le
lemme suivant :
Lemme de la partie réelle : Pour tous r, R € Ry, tels que R > r, on a

R-i—r 2r
T o)+ 5

M(r) < rA(R)'

1. Montrer que pour tous n > 1 on a

1 27 " Cind
p = — R(f(re'))e™""db.

n
mr 0

On commence par observer que pour n € 7Z on a

/Qﬂpmt(ﬁ 2r sin=0
0 0 sinon.



On a de plus R(f(re™)) = 230 (ane™ + G,e~")r". Comme cette série converge normalement, on
peut échanger 'intégrale et la somme pour obtenir

2

%(f(’f’ —zntdt Z / akezkt+ake—zkt] —zntdt

0

Or dans cette somme, tous les termes pour k # n s’annulent par la formule ci-dessus, et on obtient
2

R(f(re™))e ™t dt = r"ma,,.
0

. On suppose dans cette question que f(0) = 0. Montrer que pour tout entier n > 1 et tout r > 0 on a

2A(r)

rn

lan| <

En déduire que pour tous R > r > 0, M(r) < 2’}?(7{%)

D’aprés la formule précédente on a

27
lan| < %A IR(f(re?))| do < 24(r).

T rm

On majore maintenant la série. Sous I’hypothése que f(0) = 0, en utilisant l'inégalité précédente en

R>r
|f(rei9)} < Zr” lan| < QA(R)Z (%)n = 2A(R) <R-’ir B 1) _ Q;A_(]:)

n=1 n=1

Ainsi on conclut que M(r) = sup,, |, |f(2)] < 2;__’{47(?).

. Conclure.
On applique ce qui précéde a g(z) = f(z) — f(0) et on obtient

2r(A(r) +1£(0)[)
R—r ’

M(r) = [f(0)] <

ce qui donne bien M (r) < ££2[£(0)] + 2= A(R).



