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Les exercices marqués d’un † sont à faire en priorité, ceux marqués d’un † sont des exercices complémen-
taires, à faire pour aller plus loin.

Séries entières
Exercice 1. Vrai-faux d’échauffement.
Vrai ou faux ? Donner une démonstration ou un contre-exemple. On considère f(z), g(z) ∈ C[[z]], et on note
ρ(f) le rayon de convergence d’une série entière f . On va utiliser la caractérisation comme quoi ρ(f) est le
sup des réels r > 0 tels que |an|rn est bornée. On écrit f(z) =

∑
anz

n et g(z) =
∑
bnz

n.

1. ρ(f + g) > min(ρ(f), ρ(g)) et ρ(fg) > min(ρ(f), ρ(g)).
Vrai et vrai. Si |an|rn et |bn|rn sont bornés, alors |an + bn|rn 6 |an|rn + |bn|rn est bornée.
Similairement, si r < r′ < min(ρ(f), ρ(g)), en prenant C > 0 telle que |an|r′n < C ′ et |bn|r′n < C ′, on a∣∣∣∑ akbn−k

∣∣∣ rn 6 (r/r′)n
∑
|ak|r′k|bnk |r′n−k 6 nC(r/r′)n.

2. Si ρ(f) > ρ(g), alors ρ(f + g) = ρ(g).
Vrai. Soit r > 0 : on a |an + bn|rn > |bn|rn − |an|rn. Pour ρ(f) > r > ρ(g), on a |an|rn borné et |bn|rn
non-borné, donc ρ(f + g) 6 ρ(g), ce qui conclut par l’item précédent.

3. Si ρ(f) > ρ(g), alors ρ(fg) = ρ(g).
Faux. f(z) = 1− z, g(z) = 1

1−z .

4. Si f ∈ C[[z]] converge sur le cercle |z| = r, alors ρ(f) > r. Et en remplaçant la conclusion par ρ(f) > r ?
Vrai, faux. Si

∑
anz

n converge pour |z| = r alors forcément |an|rn est bornée. Un contre-exemple à la
deuxième affirmation est donné par

∑
n>1

zn

n2 sur le cercle |z| = 1.

5. ρ(f) = ρ(f ′).
Vrai, il suffit de remarquer que anRn → 0 si, et seulement si (n+ 1)an+1R

n → 0.

Exercice 2. Série harmonique.
On définit, pour n > 1, Hn = 1 + 1

2 + ...+ 1
n , et

H(z) =
∑
n>1

Hnz
n.

Calculer le rayon de convergence de cette série et démontrer que H(z) = − log(1−z)
1−z formellement (et donc pour

tout z dans le disque de convergence).
Hn = log(n) +O(1) donc le rayon de convergence est 1 par le critère de votre choix.
En écrivant 1

1−z =
∑
n>0 z

n et − log(1− z) =
∑
n>1

zn

n , on calcule :

− log(1− z)
1− z

=

∑
n>0

zn

 ·
∑
m>1

zm

m


=
∑
`>0

 ∑
m+n=`,m>1

1

m

 z`

=
∑
`>0

H`z
`.

†Merci à Hadrien et Louise pour ce phoque et ce raton-laveur en Tikz.
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Exercice 3. Une expression explicite pour les suites de Lucas.
On considère, pour a, b ∈ C, b non-nul, la suite définie par L0 = 0, L1 = 1 et Ln+1 = aLn + bLn−1. On pose
L(z) =

∑
n>0 Lnz

n.

1. Montrer que L(z) = z
1−az−bz2 .

On vérifie que

(1− az − bz2)L(z) =
∑
n>2

(Ln − aLn−1 − bLn−2)zn + L0 + L1z − aL0 = z.

2. En écrivant 1− az − bz2 = −b(z − α)(z − β) et en réalisant une décomposition en éléments simples, en
déduire une expression explicite pour Ln. On pensera à différencier les cas α 6= β et α = β.
On vérifie que

z

−b(z − α)(z − β)
=

1

b(α− β)

(
1

z − α
− 1

z − β

)
.

De là, en écrivant
1

z − α
= − 1

α

1

1− (z/α)
= −

∑
n>0

1

αn+1
zn

on trouve
Ln =

1

b(β − α)

(
1

αn
− 1

βn

)
Si α = β, on a

1

−b(z − α)2
=

1

bα2

∑
n>0

n

αn
zn

Exercice 4. Somme de carrés.
Notons r2(n) le nombre de points à coordonnées entières positives sur le cercle de rayon

√
n, et Dn le nombre

de points à coordonnées entières positives dans le disque de rayon
√
n (par exemple, r2(5) = 2 car 22 + 12 =

12 + 22 = 5). Démontrer que ∑
m>0

zm
2

2

=
∑
n>0

r2(n)zn

puis que

1

1− z

∑
m>0

zm
2

2

=
∑
n>0

Dnz
n.

Quels sont les rayons de convergences de ces séries ?
On réécrit

∑
m>0 z

m2

:=
∑
n>0 cnz

n où cn est 1 si n est un carré et 0 sinon. On trouve donc∑
m>0

zm
2

2

=
∑
n>0

 ∑
i+j=n

cicj

 zn.

Il suffit à présent de voir que
∑n
i=0 cicn−i = r2(n) : pour ça, on remarque que cicn−i est 1 précisément quand

i+ n− i = n est une écriture de n comme somme de deux carrés, ce qui conclut pour le premier calcul.
Le second calcul revient juste à écrire Dn =

∑n
k=0 r2(k).

Exercice 5. Un peu de combinatoire.
Soit Pn le nombre de façons de partitionner un ensemble de n éléments en morceaux de cardinal 1 ou 2, on
considère S(z) :=

∑
n>0

Pn
n! z

n.
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1. Prouver l’égalité de séries entières
S′(z) = (1 + z)S(z).

Prouver l’égalité S′(z) = (1 + z)S(z) revient à prouver Pn+1 = Pn + nPn−1 car

S′(z) =
∑
n>0

Pn+1

n!
zn, (1 + z)S(z) =

∑
n>0

Pn
n!
zn +

∑
n>1

Pn−1
(n− 1)!

zn.

Cette égalité se prouve combinatoirement : si on considère les partitions de An := {1, ..., n}, une partition
de An+1 en morceaux à 1 ou 2 éléments correspond soit à une partition de An (si n+ 1 est seul), soit au
choix d’un élément i de An (le compagnon de n+ 1) et une partition de An \ {i}.

2. En déduire une expression de S(z).
L’équation différentielle se résout explicitement dans C[[z]] par S(z) = Cez+

z2

2 . Comme S(0) = 1, on sait
que C = 1.

3. En déduire une formule pour Pn.
Il suffit à présent de développer :

ez+
z2

2 = ezez
2/2

=

∑
n>0

zn

n!

∑
m>0

z2m

2mm!


=
∑
k>0

( ∑
n+2m=k

k!

n!2mm!

)
zk

k!

On trouve finalement

Pk =

bk/2c∑
m=0

k!

m!(k − 2m)!2k−2m
.

Exercice 6. L’anneau C[[z]].
On introduit sur C[[z]] la valuation ord définie par

ord

∑
n>0

anz
n

 = min{n > 0 : an 6= 0}

et ord(0) = +∞.

1. Montrer que ord(f) > k si, et seulement si zk divise f dans C[[z]].
ord(f) > k si et seulement si a0 = ... = ak−1 = 0, auquel cas

f(z) = akz
k + ak+1z

k+1 + ... = zk(ak + ak+1z + ...).

Réciproquement, si f(z) = zkg(z) pour une certaine g, alors ses k premiers coefficients sont nuls et
ord(f) > k.

2. Vérifier que ord(fg) = ord(f) + ord(g).
En posant m = ord(f), n = ord(g), on a f = zmu(z), g = znv(z) avec u(0), v(0) 6= 0. On a alors
fg = zm+nuv, où le coefficient constant de uv est u(0)v(0) qui est non-nul.

3. Montrer que f(z) ∈ C[[z]] est inversible si et seulement si elle vérifie ord(f) = 0. En particulier, tout
élément f(z) ∈ C[[z]] s’écrit uniquement comme f(z) = zng(z) avec g inversible et n = ord(f).
Comme ord(f) = 0, a0 6= 0, et donc quitte à multiplier par 1/a0 on peut supposer que f(z) = 1− zg(z).
De là, les propriétés de composition des séries entières nous assurent que (1− zg(z)) · 1

1−zg(z) = 1.
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4. Soit I ( C[[z]] un idéal. Montrer que I ⊆ zC[[z]].
Comme I est un idéal propre, il ne contient aucun élément inversible, donc tous ses éléments sont d’ordre
> 1, et donc multiples de z.

5. Montrer qu’en fait il existe m tel que I = zmC[[z]]. L’anneau C[[z]] est un anneau principal !
Soit f(z) un élément d’ordre minimal m dans I : on écrit f(z) = zmu(z) avec g inversible. Si g(z) =
zmh(z), alors g(z) = f(z)u(z)−1h(z) ∈ I, d’où zmC[[z]] ⊆ I. Comme m est minimal, tout élément de I
est multiple de zm, ce qui conclut.

6. Vérifier que les résultats de cet exercice restent valides si l’on remplace C[[z]] par l’anneau C{z} des séries
entières de rayon de convergence > 0.
Le seul point réellement délicat est la convergence de la série entière

1

1− zg(z)

si 1 − zg(z) est convergente, mais ça découle de la convergence du composé de séries entières conver-
gentes (on pourrait aussi s’amuser à borner explicitement vu que les coefficients sont raisonnablement
sympathiques).

Exercice 7. Composition de séries entières.
Soit f(z) =

∑
n>0 anz

n ∈ C[[z]], h(z) =
∑
n>1 cnz

n ∈ C[[z]]. On note
∑
n>m Cm,nz

n la série entière h(z)m. On
définit la série entière composée f(h(z)) comme :

f(h(z)) =
∑
n>0

(
n∑

m=0

amCm,n

)
zn.

1. Montrer que (f +g)(h(z)) = f(h(z))+g(h(z)) par calcul direct. Pouvez-vous montrer la même propriété
pour le produit ?
L’expression des coefficients de f ◦ g est linéaire en les (an)n. Pour le produit, j’ai essayé et je n’ai pas
réussi.
On note fm(z) le polynôme a0 + a1z + ...+ amz

m et hn(z) le polynôme c1z + ...+ cnz
n

2. Montrer que pour m,n > k, les termes de degré 6 k du polynôme fm(hn(z)) ne dépendent pas de
m,n > k et sont les mêmes que ceux de la série entière f(h(z)).
On commence par observer que pour u polynôme et n, n′ > k, les termes d’ordre 6 k de u(hn(z)) et
u(hn′(z)) sont les mêmes.
Pour r > k, hn(z)r n’a que des termes d’ordre > k puisqu’il est de la forme zrv(z). Soient doncm,m′ > k,
fm(hn(z)) et fm′(hn(z)) ont les mêmes termes d’ordre 6 k puisque leur différence ne comporte que des
termes de la forme h(z)r. Par conséquent, fm(hn(z)) et fm′(hn′(z)) ont les mêmes termes d’ordre 6 k.
Comme le coefficient Cm,n ne fait intervenir que les coefficients de h de degré 6 n, c’est aussi le coefficient
de zn dans hn(z)m. Vu que le coefficient de zn dans f(h(z)) ne fait intervenir que les ar et Cr,n pour
r 6 n, c’est aussi le coefficient de zn dans fm(hn(z)) pour m > n.
Tout ce raisonnement est rendu beaucoup plus simple en travaillant dans C[z]/(zk) et C[[z]]/(zk), et
notamment en remarquant que les deux sont naturellement isomorphes. Notamment, demander à ce que
les termes de degré 6 k de deux séries entières u, v soient égaux revient à demander à ce que u = v
mod zk+1. Ensuite, il suffit d’observer que f(z) = fm(z) mod zk+1 et hn(z) = h(z) mod zk+1 et
comme h(z)r = 0 mod zk+1 pour r > k, on a fm(hn(z)) = fm(h(z)) = f(h(z)) mod zk+1.

3. En déduire que la composition est compatible au produit et associative.
L’égalité fm(hn(z))gm(hn(z)) = (fg)m(hn(z)) mod zk+1 pour m,n > k permet de conclure pour le
produit. L’associativité découle du fait que si g, h sont divisibles par z, alors pour l,m, n > k, on a
fm(gl ◦hn(z))) = fm◦gl(hn(z)) par associatvitié de la composition de polynômes. Comme les coefficients
d’ordre 6 k de fm ◦ gl sont ceux de f ◦ g et les coefficients d’ordre 6 k de gl ◦ hm sont ceux de g ◦ h, ce
qui conclut.

4. Vérifier que si f et h ont un rayon de convergence non-nul, alors f(h(z)) a un rayon de convergence
non-nul, et que f(h(z)) est bien le développement en série entière de la fonction f ◦ h.
Comme h a un rayon de convergence positif, elle définit une fonction continue sur le disque fermé de
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rayon r pour tout r > 0 assez petit. Comme h est continue et h(0) = 0, étant donné r′ > 0, il existe un
r > 0 tel que h

(
D(0, r)

)
⊆ D(0, r′). Il suffit alors de prendre r′ < ρ(f) : alors, pour |z| 6 min(r, r′), on a

convergence absolue de
∑
amh(z)m et de

∑
Cm,nz

n et on peut échanger

f(h(z)) =
∑
m>0

amh(z)m

=
∑
m>0

am
∑
n>m

Cm,nz
n

=
∑
n>0

(
n∑

m=0

amCm,n

)
zn.

Exercice 8. Théorème de Cauchy pour les équations différentielles
On désire démontrer le théorème suivant :
Théorème de Cauchy : Soient a0, ..., an−1 ∈ C[[z]]. Le C-espace vectoriel des solutions y(z) ∈ C[[z]] de
l’équation différentielle

y(n)(z) + an−1(z)y(n−1)(z) + ...+ a0(z)y(z) = 0 (1)

est de dimension n, et un isomorphisme explicite avec Cn est donné par

y 7→
[
y(0), y′(0), ..., y(n−1)(0)

]T
.

De plus, si les ai ont toutes un rayon de convergence > R, alors les solutions ont un rayon de convergence > R.

1. On pose A(z) ∈Mn

(
C[[z]]

)
la matrice

A(z) :=


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

−a0(z) −a1(z) . . . −an−1(z)

 .
Démontrer que y 7→ [y(z), y′(z), ..., y(n)(z)]T réalise un isomorphisme entre l’espace des solutions de (1)
et l’espace des y(z) ∈ C[[z]]n vérifiant

y′(z) = A(z)y(z). (2)

C’est une vérification directe : si y(z) = [y0(z), ..., yn−1(z)]T , l’équation y′(z) = A(z)y(z) est équivalente
à y′i(z) = yi+1(z) pour i = 0, ..., n − 2, donc yi(z) = y(i)(z) et y′n−1 = −an−1yn−1 − ... − a0y0, donc on
retrouve l’équation voulue en remplaçant yi par y(i).

2. Vérifier que la donnée de n solutions de (2) est équivalente à la donnée d’une matrice Y (z) ∈Mn

(
C[[z]]

)
vérifiant

Y ′ = AY. (3)

Multiplier une matrice à gauche par A revient à multiplier ses colonnes par A.

3. Soit Y ∈ GLn
(
C[[z]]

)
une solution de (3). Vérifier que X = Y −1 est solution de l’équation différentielle

X ′(z) = −X(z)A(z). On pourra penser à vérifier que la règle de Leibniz (UV )′ = U ′V +UV ′ s’applique
dans le cas de matrices.
On dérive la relation Y Y −1 = 1n :

Y ′Y −1 + Y (Y −1)′ = 0

donc (Y −1)′ = −Y −1Y ′Y −1. Comme Y ′ = AY , on a

(Y −1)′ = −Y −1AY Y −1 = −Y −1A.
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4. Démontrer que si Y1 ∈ GLn
(
C[[z]]

)
, Y2 ∈ Mn

(
C[[z]]

)
sont des solutions de (3), la matrice Y −11 Y2 est une

matrice constante. En déduire que si une telle matrice Y1 existe, l’espace des solutions de (2) est de
dimension n sur C.
On vérifie en appliquant la règle de Leibniz que (Y −11 Y2)′ = 0 :

(Y −11 )′Y2 + Y −11 Y ′2 = −Y −11 AY2 + Y −11 AY2 = 0.

Par conséquent, Y2 = Y1C avec C une matrice constante : en particulier, les colonnes de Y1 forment une
C-base de l’espace des solutions.

5. En écrivant A(z) =
∑
n>0Anz

n, résoudre (3) avec la condition Y (0) = 1n. Vérifier que la matrice Y
obtenue est inversible.
Indication : on pourra vérifier que la série entière det(Y (z)) est inversible
C’est encore un calcul : on a d’une part

Y ′ =
∑
n>0

(n+ 1)Yn+1z
n

et d’autre part

AY =
∑
n>0

(
n∑
k=0

AkYn−k

)
zn.

Par conséquent, Y ′ = AY et Y (0) = 1n si et seulement si (Yn)n vérifie{
Y0 = 1n

Yn+1 = 1
n+1

∑n
k=0AkYn−k

.

Il existe clairement une et une seule suite de matrices vérifiant ces conditions. Pour vérifier l’inversibilité
de Y , il suffit de vérifier que det(Y ) est une série entière inversible. Mais Y (0) = 1n, donc det(Y (0)) =
det(Y )(0) = 1. C’est donc une série entière inversible.

6. En déduire la partie formelle du théorème de Cauchy.
L’existence d’une matrice de solutions inversibles implique l’existence d’une base de cardinal n par les
questions précédentes.

7. Utiliser l’expression explicite trouvée pour les coefficients de Y pour prouver la partie sur les rayons de
convergence.
Indication : montrez que si A(z) converge sur le disque de rayon R, alors Y (z) converge sur le disque de
rayon r pour tout r < R.
Notons |M | la norme donnée par le sup des modules des coefficients de M . On a |MN | 6 n|M | · |N |.
Si R est tel que A converge sur le cercle de rayon R, alors |Am| 6 CR−m pour une constante réelle C > 0.
Soit r < R un réel, on veut montrer qu’il existe une constante D (à déterminer) telle que |Ym| 6 Dr−m.
On procède par récurrence.

|Ym+1| 6
n

m+ 1

m∑
k=0

|Ak| · |Ym−k|

6
n

m+ 1

∑
k=0m

CD(r/R)kr−m

6
CDn

m+ 1
· 1

1− r/R
· r−m

6 D
Cnr

(m+ 1)(1− r/R)
r−m−1.

Il faut à présent choisir judicieusement la constante D. Pour m assez grand, l’inégalité |Ym| 6 Dr−m

sera vérifiée car Cnr
(m+1)(1−r/R) → 0 quand m→∞, et donc elle devient inférieure à 1 à partir d’un certain

rang m0. Si l’on choisit D supérieure à |Ym|rm pour tout m < m0, alors certainement l’égalité sera
vérifiée par défaut pour m < m0, et elle le sera pour m > m0 grâce au choix de m0.
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Fonctions analytiques
Exercice 9. Opérations sur les fonctions analytiques.
Montrer les propriétés suivantes :

1. Soit U un ouvert connexe et f, g : U → C deux fonctions analytiques. Montrer que le produit z 7→
f(z)g(z) est analytique.
La question est locale sur U , et le produit de séries entières convergentes est convergent (et le produit
est compatible à l’évaluation en un point du domaine de convergence).

2. Soient U, V ⊆ C des ouverts et soient g : U → V , f : V → C des fonctions analytiques. Montrer que la
fonction f ◦ g : U → C est analytique. En particulier si f est analytique sur un ouvert U et ne s’annule
pas, la fonction 1/f est analytique (On pourra penser à l’exercice 7).
La question est encore une fois locale sur U . Si l’on considère le développement de g au voisinage de
g(z0) ∈ V , le coefficient constant est nul, et on peut composer les séries entières correspondantes en toute
sérénité.

3. Montrer que cos2(z) + sin2(z) = 1 pour tout z ∈ C, de préférence sans calcul !
L’identité cos2 + sin2 = 1 est déjà connue sur R, et le principe des zéros isolés appliqué à la fonction
cos2(z) + sin2(z)− 1 permet de conclure.

4. Soit U ⊆ C un ouvert connexe, on considère une fonction analytique f non nulle sur U et K ⊆ U un
compact. Montrer que f a un nombre fini de zéros dans K.
L’ensemble V (f) ⊆ U des zéros de f est discret dans U par le principe des zéros isolés. Si K ⊆ U est
compact, K ∩ V (f) est compact et discret et donc fini.

Exercice 10. Une fonction analytique qui ne se prolonge pas.
Démontrer que la série entière

∑
n>0 z

2n définit une fonction analytique sur D qui diverge au voisinage de
e

2ikπ
2m pour k ∈ Z,m > 0, et en déduire qu’il existe des fonctions analytiques sur le disque qui ne se prolonge à

aucun ouvert connexe contenant strictement le disque.

Soit r < 1 : pour n > m,
(
re

2ikπ
2m

)2n
= r2

n

et donc

f
(
re

2ikπ
2m

)
=

m−1∑
n=0

r2
n

e
2ikπ

2m−n +
∑

n>m+1

r2
n

.

Le premier terme est borné en module par m et le deuxième terme diverge vers +∞ quand r → 1, ce qui
prouve que f diverge au voisinage de e

2ikπ
2m . Tout ouvert U contenant strictement D contient nécessairement

un e
2ikπ
2m , et on ne peut donc pas prolonger f à U .

Exercice 11. Annulation des coefficients de Taylor.
Soit U ⊆ C un ouvert connexe, f une fonction analytique sur U qui n’est pas un polynôme. Montrer qu’il
existe un point a ∈ U tel qu’aucun coefficient du développement en série entière de f au voisinage de a n’est
nul.
Indication : on pourra montrer que l’ensemble des points où la non-annulation de tous les coefficients est
vérifiée est un Gδ dense.
Considérons l’ensemble Un = {a ∈ U : f (n)(a) 6= 0}. C’est un ouvert non-vide (car f n’est pas un polynôme)
qui est même dense dans U car son complémentaire, donné par f (n) = 0, est discret. Par le théorème de Baire,
une intersection d’ouverts denses est encore dense, et donc il existe un point a ∈ ∩n>0Un.

Exercice 12. Sommation d’Abel.
Soit (An)n>0 et (Bn)n>0 deux suites de nombres complexes.

1. Montrer la formule de sommation par partie : pour tout entier n ≥ 1 on a

n−1∑
k=0

(Ak+1 −Ak)Bk = (AnBn −A0B0)−
n−1∑
k=0

Ak+1(Bk+1 −Bk).
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On a la somme téléscopique

n−1∑
k=0

(AkBk −Ak+1Bk+1) = A0B0 −AnBn,

que l’on peut écrire comme

n−1∑
k=0

(AkBk −Ak+1Bk+1) =

n−1∑
k=0

Ak(Bk+1 −Bk) +Bk(Ak+1 −Ak).

2. Soit (an)n>0 une suite de nombres complexes telle que la suite des sommes partielles (
∑n
i=0 an)n>0

est bornée, et (Bn)n>0 une suite de nombres réels strictement positifs, décroissante, tendant vers 0.
Démontrer que la série

∑
n anBn converge.

Posons pour tout n ≥ 0, An =
∑n
k=0 ak et Sn =

∑n
k=0 akBk. On va montrer que sous les hypothèses,

(Sn)n≥0 est une suite de Cauchy. Posons A > 0 tel que |An| 6 A pour tout n ≥ 0. Alors pour N,M ≥ 0
tels que N > M , on a par la sommation d’Abel

|SN − SM | =

∣∣∣∣∣ANBN −AMBM +

M−1∑
k=N

Ak(Bk+1 −Bk)

∣∣∣∣∣ 6 AbN +AbM +

N−1∑
k=M

A |Bk+1 −Bk| 6 2AbM .

Ceci conclut que (Sn)n≥0 est une suite de Cauchy et donc convergente.

3. Soit (Bn)n>0 une suite décroissante de nombres réels tendant vers 0 telle que la série de terme général Bn
est divergente. Montrer que la série entière

∑
nBnz

n a pour rayon de convergence 1 et est convergente
en tout point de U = {z ∈ C : |z| = 1} sauf en z = 1.
Il est clair que le rayon de convergence de

∑
nBnz

n est 6 1 puisque la série entière diverge pour z = 1.
De plus pour z ∈ C tel que |z| < 1, comme la suite des |Bn| est bornée, disons par C > 0, on a

∞∑
n=0

|Bnzn| 6 C

∞∑
n=0

|z|n =
C

1− |z|
,

donc la série
∑
nBnz

n converge absolument en |z| < 1, par conséquent le rayon de convergence est 1.
Soit z ∈ U \ {1}. Pour démontrer que la série converge en z, on applique le critère d’Abel. Pour tout
N ≥ 0 ∣∣∣∣∣

N∑
n=0

zn

∣∣∣∣∣ 6 2

|1− z|
,

donc les sommes partielles des zn sont bornées. On est donc est bien sous les hypothèses de la question
précédente avec an = zn et par conséquent

∑
nBnz

n converge si z 6= 1.

Exercice 13. Lemme de la partie réelle.
Soit f(z) =

∑
n anz

n une série entière à coefficients complexes, de rayon de convergence +∞. Pour tout
r ∈ R>0, notons M(r) = sup|z|6r |f(z)| et A(r) = sup|z|6r |<(f(z))|. Le but de l’exercice est de montrer le
lemme suivant :
Lemme de la partie réelle : Pour tous r,R ∈ R>0, tels que R > r, on a

M(r) 6
R+ r

R− r
|f(0)|+ 2r

R− r
A(R).

1. Montrer que pour tous n > 1 on a

an =
1

πrn

∫ 2π

0

<(f(reiθ))e−inθdθ.

On commence par observer que pour n ∈ Z on a∫ 2π

0

eintdt =

{
2π si n = 0

0 sinon.
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On a de plus <(f(reit)) = 1
2

∑∞
n=0(ane

int + āne
−int)rn. Comme cette série converge normalement, on

peut échanger l’intégrale et la somme pour obtenir∫ 2π

0

<(f(reit))e−intdt =
1

2

∞∑
k=0

rk
∫ 2π

0

[ake
ikt + āke

−ikt]e−intdt.

Or dans cette somme, tous les termes pour k 6= n s’annulent par la formule ci-dessus, et on obtient∫ 2π

0

<(f(reit))e−intdt = rnπan.

2. On suppose dans cette question que f(0) = 0. Montrer que pour tout entier n > 1 et tout r > 0 on a

|an| 6
2A(r)

rn
.

En déduire que pour tous R > r > 0, M(r) 6 2rA(R)
R−r .

D’après la formule précédente on a

|an| 6
1

πrn

∫ 2π

0

∣∣<(f(reiθ))
∣∣ dθ 6 2A(r)

rn
.

On majore maintenant la série. Sous l’hypothèse que f(0) = 0, en utilisant l’inégalité précédente en
R > r ∣∣f(reiθ)

∣∣ 6 ∞∑
n=1

rn |an| 6 2A(R)

∞∑
n=1

( r
R

)n
= 2A(R)

(
R

R− r
− 1

)
=

2rA(R)

R− r
.

Ainsi on conclut que M(r) = sup|z|=r |f(z)| 6 2rA(R)
R−r .

3. Conclure.
On applique ce qui précède à g(z) = f(z)− f(0) et on obtient

M(r)− |f(0)| 6 2r(A(r) + |f(0)|)
R− r

,

ce qui donne bien M(r) 6 R+r
R−r |f(0)|+ 2r

R−rA(R).
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